Forecasting and turning point predictions in a Bayesian panel VAR model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting with a noncausal VAR model

We propose simulation-based forecasting methods for the noncausal vector autoregressive model proposed by Lanne and Saikkonen (2012). Simulation or numerical methods are required because the prediction problem is generally nonlinear and, therefore, its analytical solution is not available. It turns out that different special cases of the model call for different simulation procedures. Simulatio...

متن کامل

Interactions between Eurozone and US Booms and Busts: A Bayesian Panel Markov-switching VAR Model

Interactions between the eurozone and US booms and busts and among major eurozone economies are analyzed by introducing a panel Markov-switching VAR model well suitable for a multi-country cyclical analysis. The model accommodates changes in low and high data frequencies and endogenous time-varying transition matrices of the country-specific Markov chains. The transition matrix of each Markov c...

متن کامل

Forecasting Exchange Rates with a Large Bayesian VAR

Models based on economic theory have serious problems at forecasting exchange rates better than simple univariate driftless random walk models, especially at short horizons. Multivariate time series models suffer from the same problem. In this paper, we propose to forecast exchange rates with a large Bayesian VAR (BVAR), using a panel of 33 exchange rates vis-a-vis the US Dollar. Since exchange...

متن کامل

Accuracy of Bayesian VAR in forecasting the economy of Indiana

This paper develops a forecasting model for important macroeconomic variables in the state of Indiana. In this study, we specify a Bayesian Vector Autoregression (BVAR) model with Litterman’s prior. A comparison with the Vector Autoregression (VAR) model shows that BVAR improves forecast by reducing root mean square

متن کامل

Forecasting using a large panel of predictors: Bayesian model averaging and principal components regression

We study the out-of-sample forecast performance of two alternative methods for dealing with dimensionality: Bayesian model Averaging (BMA) and principal components regression (PCR). We conduct a different out-of-sample investigation in which the predictors are chosen jointly for both output and inflation using Bayesian variable selection in each out-of-sample recursion using information availab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2004

ISSN: 0304-4076

DOI: 10.1016/s0304-4076(03)00216-1